
. 
V 

NASA Technical Memorandum 89122 
USA AVSCOM TECHNICAL REPORT 87-B-1 

The Effects of Crushing Speed on 
the Energy-Absorption Capability 
of Composite Material 

(NRSA-TM-83122) THE EFFECTS OF C R U S f i A N ;  N87-25438 
SFElX-UIF IT6 EmRSY-BESORPTION CAPABILITK OF 
C o n P O s r r E  PIATERIRL ( N A S A )  23 p AvaiA: 
" T I S  HC A02/MF A01 CSCL 1 1 D  Un Cl as 

Z3/23 0084708 

Gary L. Farley 

March 1987 

National Aeronautics and 
Space Administration 

Langley Research Center 
Hampton, Virginia 23665-5225 



THE EFFECTS OF CRUSHING SPEED ON THE ENERGY-ABSORPTION CAPABILITY 
OF COMPOSITE MATERIAL 

Gary L. Far ley 
Aerostructures D i  r e c t o r a t e  

NASA Langley Research Center 
Hampton, VA 23665-5225 

U. S. Army A v i  a t  i on Research and Techno1 ogy Act i v i  ty-AVSCOM 

ABSTRACT 

The energy-absorption c a p a b i l i t y  as a f u n c t i o n  o f  crushing speed was deter-  
mined f o r  Thornel 300/F iber i te  934 (Gr/E) and K e v l a r - I g / F i b e r i t e  934 ( K / E )  
composite mater ia l  . C i r c u l a r  cross sect ion tube specimens were crushed a t  
speeds ranging from m/sec t o  12 m/sec. Ply o r i e n t a t i o n s  o f  t h e  tube 
specimens were [O/?e], and [?el2 where e=15, 45, and 75 degrees. 
t h e  r e s u l t s  o f  these t e s t s  the energy-absorption c a p a b i l i t y  o f  G r / E  and K/E 
was determined t o  be a funct ion of crushing speed. The magnitude of the  
e f f e c t s  o f  crushGg-speed on - e n e r w a b s o r p t i o n  c a p a b i l i t y  wasPd=ermTried t o  be 
a f u n c t i o n  o f  the mechanisms t h a t  control  t h e  crushing process. The crushing 
modes based upon e x t e r i o r  appearance of t h e  crushed tubes were unchanged f o r  
e i t h e r  mater ia l .  However, the in te r laminar  crushing behavior o f  the G r / E  
specimens changed w i t h  crushing speed. 

Based upon 

INTRODUCTION 

Composite mater ia ls  are being proposed f o r  a p p l i c a t i o n  t o  a i r c r a f t  and 
automotive s t ruc tu res  t o  meet s t r ingent  weight and manufactur ing cost con- 
s t r a i n t s .  
c a n t l y  d i f f e r e n t  than the crushing modes o f  m e t a l l i c  mater ia ls  recent studies,  
references 1-11, have shown t h a t  composite mater ia ls  can be e f f i c i e n t  energy 
absorbing mater ia ls .  

Many studies,  references 1, 3, 4, 6, 7, 8, 11-13, have been conducted t o  
i n v e s t i g a t e  how the  c o n s t i t u t i v e  mater ia l  p roper t ies  o f  composite mater ia ls  
and specimen a r c h i t e c t u r e  e f f e c t  energy-absorption c a p a b i l i t y .  The m a j o r i t y  
o f  these t e s t s  have been performed under q u a s i - s t a t i c  crushing speed condi- 
t i o n s  t o  f a c i l i t a t e  the  understanding o f  crushing modes and mechanisms w h i l e  
l i t t l e  , i s  understood about the dynamic crushing c h a r a c t e r i s t i c s .  

Although composite mater ia ls  can e x h i b i t  crushing modes s i g n i f i -  

L i m i t e d  dynamic crushing t e s t s  have been conducted as p a r t  o f  more comprehen- 
s i v e  s tud ies  reported i n  references 4, 5, 6, 9, and 11. These dynamic t e s t s  
were l i m i t e d  i n  scope and were inconclus ive w i t h  regards t o  whether t h e  
energy-absorption c a p a b i l i t y  o f  composite mater ia ls  i s  a func t ion  o f  crushing 
speed. The s tud ies by H u l l ,  references 5 and 9, and Thornton, reference 4, 
focused p r i m a r i l y  on automotive app l ica t ion  o f  composites. The mater ia ls  
evaluated were g l  ass/polyester,  g l  asslepoxy , and graphi telepoxy. A hydraul i - 
c a l l y  actuated t e s t  machine was used i n  the  dynamic tes ts .  Crushing speeds 



were between quas i -s ta t i c  and 15 m/sec. 
and graph i te  re in forced m a t e r i a l s  were not a funct ion of crushing speed. 
Far ley,  reference 8, tes ted  graphite/epoxy, Kevl arlepoxy, and g l  ass/epoxy 
composite t u b u l a r  specimens having [0/2014 p l y  o r i e n t a t i o n  a t  speeds o f  
q u a s i - s t a t i c  and 7.6 m/sec. The dynamic t e s t s  were conducted i n  a drop 
tower. These resu l ts  suggested t h a t  the  energy-absorption c a p a b i l i t y  o f  
composite mater ia ls  was not a funct ion of crushing speed. Bannerman and 
Kindervater ,  reference 6, and Kindervater,  reference 11, presented t e s t  
r e s u l t s  on Gr /E  and K/E t u b u l a r  and beam specimens. 
i n  these studies.  The r e s u l t s  s t rong ly  suggest the  energy-absorption capa- 
b i l i t y  o f  composite m a t e r i a l s  i s  a func t ion  o f  crushing speed. However, t h e  
mechanisms t h a t  govern the  e f f e c t s  o f  crushing speed on energy-absorption 
capabi 1 i ty  were not i d e n t i  f i  ed. 

These s tud ies suggested t h a t  glass 

A drop tower was u t i l i z e d  

c 

The only  study that  focused e x c l u s i v e l y  upon t h e  e f f e c t s  o f  crushing speed on 
energy-absorpt i  on capabi 1 i t y  was conducted by Berry and H u l l  , reference 14. 
I n  t h i s  study, only [0/90] glass epoxy f a b r i c  tube specimens were evaluated. 
Crushing speeds were between 10,' and 10 m/sec. Tube specimens had diameter 
t o  th ickness r a t i o s  of 25 and f i b e r  volume f r a c t i o n s  o f  39 percent. 
h y d r a u l i c  machine was used f o r  t h e  10 m/sec crushing speed t e s t s  wh i le  a 
convent ional  screw d r i v e n  t e s t  machine was used f o r  a l l  o ther  lower speed 
t e s t s .  The resu l ts  o f  t h i s  study i n d i c a t e  t h a t  energy-absorption c a p a b i l i t y  
var ies  l i n e a r l y  wi th the l o g  o f  the crushing speed. A 40 percent increase i n  
energy-absorpt i on capabi 1 i t y  was obta i  ned between crushing speeds o f  l o e 7  
m/sec and 10 m/sec. Berry, et. a l ,  reference 14, a t t r i b u t e s  t h i s  phenomena t o  
t h e  e f f e c t s  o f  s t r a i n  r a t e  on Mode I crack growth res is tance ( G I ~ ) .  
reasonable t o  expect t h a t  t h e  energy-absorption t rends could be s i g n i f i c a n t l y  
changed w i t h  specimens composed o f  d i f f e r e n t  m a t e r i a l s  and having d i f f e r e n t  
a rch i tec tu re .  

A servo- 

I t  i s  

The o b j e c t i v e  o f  the study repor ted here in i s  t o  determine whether t h e  energy- 
absorpt i on capabil  i ty o f  Thornel 3OO/Fi b e r i  t e  934 (Gr/E) and Kevl a r  491 
F i b e r i t e  934 ( K / E )  composite mater ia l  i s  a f u n c t i o n  o f  crushing speed and t o  
develop an understanding o f  the crushing mechanisms. C i r c u l a r  cross sec t ion  
t u b u l a r  specimens were crushed between speeds o f  m/sec and 12 m/sec. 
Crushing speed was maintained constant, w i t h i n  t h e  c a p a b i l i t y  o f  the  t e s t  
machine, as t h e  specimens were crushed. Ply o r i e n t a t i o n s  inves t iga ted  were 
[0/20]2 and [+0]3. The crushing fo rce  and speed as a f u n c t i o n  o f  t ime were 
recorded f o r  each specimen. An i n v e s t i g a t i o n  o f  the  crushing mechanisms of 
t h e  G r / E  and K/E was performed. 
was used t o  t e s t  specimens. 

A c losed loop h y d r a u l i c  actuated t e s t  system 

TEST SPECIMEN 

C i r c u l a r  cross sect ion tubes were used as t e s t  specimens because of t h e i r  
inherent  s t a b i l i t y ,  ease o f  f a b r i c a t i o n ,  and f o r  comparlson w i t h  previous 
data. 
used, f i g u r e  1. 
i n i t i a t e d  wi thout  causing ca tas t roph ic  f a i l u r e  o f  t h e  specimen. 

Tube specimens were f a b r i c a t e d  using u n i d i r e c t i o n a l  prepreg o f  Thornel 3001 
F i b e r i t e  934 (Gr/E) and Kev la r -49 /F iber i te  934 (K/E). Nominal cured p l y  

Tubes nominal ly 20.3 cm i n  length  by 3.81 cm i n s i d e  diameter were 
One end o f  each tube was chamfered so crushing could be 
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thickness o f  the  tape prepreg i s  0.013 cm (0.005 i n ) .  
wrapped around a m e t a l  mandrel using a t a b l e  wrapper. Tubes were overwrapped 
w i t h  a peel p ly ,  shr ink  tub ing  was sl ipped over t h e  peel p ly ,  and the  assembly 
was placed i n  an oven t o  cure a t  176OC. 

Prepreg mater ia l  was 

Tube p l y  o r i e n t a t i o n s  o f  [0/*012 and [*e l3  where 0=15, 45, and 75 degrees were 
evaluated. Tables 1 and 2 present d e t a i l  in fo rmat ion  on each tube t e s t e d  
along w i t h  the  t e s t  condi t ions.  

TEST EQUIPMENT, PROCEDURES AND DATA ANALYSIS 

Tube specimens were crushed a t  speeds i n  excess o f  0.01 m/sec using a c losed 
loop h y d r a u l i c a l l y  operated impact system (CLHOIS). A conventional s t a t i c  
h y d r a u l i c a l l y  operated t e s t  machine was used f o r  t e s t s  where crushing speeds 
were less  than 0.01 m/sec. The CLHOIS, f i g u r e s  2 and 3, provided constant 
crushing speeds from 0.01 m/sec t o  12 m/sec. 
CLHOIS was 22 kN. Crushing force and ram speed as a f u n c t i o n  o f  t ime were 
recorded on a h igh  speed storage tube osci l loscope. A l l  f o r c e  and speed data 
were subsequently s tored on a removable mass storage device ( f l o p p y  d i s k e t t e )  
f o r  l a t e r  analysis.  

Maximum crushing fo rce  i n  t h e  

A 21 MPa hydrau l i c  power supply provided the  means t o  propel  t h e  ram and 
crushing apparatus a t  t h e  requ i red  speed. The des i red crushing snppd ms set 
p r i o r  t o  each tes t .  
accelerates t h e  ram t o  the  s p e c i f i e d  speed. The hydrau l i c  feed back loop was 
closed by a speed transducer feeding back ram speed t o  a s igna l  condi t ioner .  
Actual ram speed was compared w i t h  spec i f ied  values t o  produce any necessary 
changes i n  ram speed. The accelerat ion o f  t h e  ram t o  the  s p e c i f i e d  speed was 
performed w i t h i n  10.2 cm o f  ram t r a v e l .  
speed p r o f  i 1 e. 

A ram f i r e  order was i n i t i a t e d  and h y d r a u l i c  pressure 

F igure 4 depic ts  a representa t ive  ram 

A f t e r  t h e  ram t raversed the  10.2 cm accelerat ion phase and t h e  set  speed was 
reached, t h e  s l i d i n g  load p la ten  contacts the  impact p la te.  
p l a t e n  i s  mounted t o  the  ram. Tube specimens are pos i t ioned between t h e  
s t a t i o n a r y  and s l i d i n g  platens, f i g u r e  3. 
w i t h  t h e  hydrau l i c  ram. When the s l i d i n g  p la ten  impacts t h e  impact p la te ,  
t h e  tube specimen i s  crushed between the s l i d i n g  and s t a t i o n a r y  platens. 
tubes were crushed a t  a constant crushing speed f o r  approximately 10.2 cm. 
Entrapped a i r  escape holes were incorporated i n t o  t h e  design o f  the  s l i d i n g  
p l a t e n  t o  minimize any a i r  spr ing e f f e c t s  t h a t  could occur dur ing  the  dynamic 
c rush ing  o f  a tube specimen. 

The procedure f o r  t e s t i n g  a tube consisted o f  f i r s t  mounting t h e  tube i n  t h e  
crushing apparatus. The chamfered end was always pos i t ioned adjacent t o  t h e  
s l i d i n g .  p laten. 
scope was readied. 
t r i g g e r  p r i o r  t o  the  i n i t a l  impact of the  s l i d i n g  p la ten  and t h e  impact 
p la te .  

The s t a t i o n a r y  

The load c e l l  i s  mounted i n  l i n e  

The 

The requi red impact speed was set  and the  storage o s c i l l o -  
An e l e c t r o n i c  t r i g g e r  on the osc i l loscope was set t o  

The CLHOIS and osc i l loscope are readied and t h e  system was f i r e d .  

The t e s t  data s tored i n  the osc i l loscope were t r a n s f e r r e d  t o  a f loppy d i s k e t t e  
f o r  subsequent analysis.  From each t e s t  ram speed and crushing fo rce  p r o f i l e s  
as a f u n c t i o n  of t ime were developed s i m i l a r  t o  those depicted i n  f i g u r e  5. 
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Approximately 2000 data points ,  evenly spaced i n  time, were recorded per  ram 
speed and crushing force data channel Wi th in  t h e  t ime i n t e r v a l  corresponding 
t o  a r e l a t i v e l y  constant v e l o c i t y  and un i fo rm crushing response, the  maximum, 
minimum, and average crushing force and ram speed were determined. 

A l l  t e s t  data were reduced t o  a s p e c i f i c  sustained crushing stresses f o r  com- 
p a r a t i v e  purposes. The spec i f i c  sustained crushing s t ress  i s  t he  average 
crushing force,  as depicted i n  f i g u r e  5, d i v ided  by the  product o f  the  cross- 
sec t iona l  area and dens i ty  of t he  tube. Cross-sect ional  area and dens i ty  o f  
t h e  tube are used t o  account fo r  d i f fe rences  i n  tube a rch i tec tu re .  Test data 
are presented as the  s p e c i f i c  sustained crushing s t ress  p l o t t e d  on the  o r d i -  
nate ax is  as a func t ion  o f  crushing speed. 

RESULTS AND DISCUSSION 

Crushing Process 

The e f f e c t s  o f  crushing speed on the  energy-absorption c a p a b i l i t y  o f  a speci -  
men are r e l a t e d  t o  whether the  ma t r i x  and/or f i b e r  mechanical p roper t i es  are a 
func t i on  o f  s t r a i n  ra te .  I n e r t i a l  e f fec ts  have been a t t r i b u t e d  t o  d i f f e rences  
i n  s t a t i c  and dynamic response of m e t a l l i c  f l o o r  s t ruc tu res ,  reference 15. 
However, t he  i n e r t i a l  e f fects  produced s i g n i f i c a n t l y  d i f f e r e n t  crushing modes 
o f  the s t r u c t u r e  than were obtained i n  the  s t a t i c  t e s t s .  To b e t t e r  understand 
how crushing speed e f f e c t s  energy-absorption c a p a b i l i t y  it i s  necessary t o  
examine the  mechanisms t h a t  con t ro l  the  crushing process and determine how 
crushing speed e f fec ts  these mechanisms. 

The c o n t r o l l i n g  mechanisms e x h i b i t e d  by the  four crushing modes are: t r a n s -  
verse laminate s t rength  ( t ransverse shear ing crushing mode), m a t r i x  s t rength  
( b r i t t l e  f r a c t u r i n g  crushing mode and lamina bending crushing modes), lamina 
bundle bending s t rength  ( b r i t t l e  f r a c t u r i n g  crushing mode), and f i b e r h a t f i x  
y i e l d  s t rength  ( l o c a l  buck l ing  crushing mode). The t ransverse  s t rength  of a 
laminate i s  p r i m a r i l y  a func t i on  o f  f i b e r  s t rength.  
mechanical response i s  a func t i on  o f  s t r a i n  r a t e  then the  energy-absorpt ion 
c a p a b i l i t y  o f  specimens t h a t  crush i n  a t ransverse shear ing mode can be a 
func t i on  o f  crushing speed. 

The m a t r i x  s t rength con t ro l s  t h e  i n te r l am ina r  crack growth i n  both the  b r i t t l e  
f r a c t u r i n g  and lamina bending crushing modes. Many polymer ic-matr ix  ma te r ia l s  
e x h i b i t  mechanical responses t h a t  are a func t i on  o f  s t r a i n  ra te .  Therefore, a 
specimen t h a t  exh ib i t s  e i t h e r  the  b r i t t l e  f r a c t u r i n g  mode or  lamina bending 
mode can e x h i b i t  energy-absorpt ion c a p a b i l i t y  that  i s  a f u n c t i o n  of c rush ing  
speed. The ef fects of crushing speed on energy-absorpt ion capabi 1 i t y  occur 
when the  percentage of energy absorbed by t h e  i n t e r l a m i n a r  crack growth i s  a 
s i g n i f i c a n t  par t  o f  t he  t o t a l  energy absorbed. Specimens t h a t  crush i n  the  
1 ami  na bendi ng mode w i  11 more readi  l y  exhi  b i t  energy-absorpt i  on capabi 1 i ty  
t h a t  i s  a funct ion of crushing speed than specimens t h a t  crush i n  the  b r i t t l e  
f r a c t u r i n g  mode. I n  the  lamina bending crushing mode, a s i g n i f i c a n t  p o r t i o n  
o f  the  t o t a l  energy absorbed i s  by i n te r l am ina r  crack growth, whereas a much 
smal ler  p o r t i o n  of the energy i s  absorbed by i n t e r l a m i n a r  crack growth i n  the  
b r i t t l e  f r a c t u r i n g  crushing mode. 

Therefore, i f  the  f i b e r s  
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The bending s t rength  o f  t he  lamina bundle c o n t r o l s  the  f r a c t u r i n g  o f  t h e  
lamina bundle i n  the  b r i t t l e  f r a c t u r i n g  crushing mode. The mechanical 
response o f  the  lamina bundle i s  p r i m a r i l y  a func t i on  o f  e i t h e r  f i b e r  (e.g., 
0 degree lamina bundle) o r  ma t r i x  (e.g., 90 degree lamina bundle o r  low f i b e r  
volume f r a c t i o n  mater i  a1 ). Therefore, i f  the  mechanical response o f  t he  domi - 
nant p roper ty  ( f i b e r  or  ma t r i x )  i s  a funct ion o f  s t r a i n  r a t e  then the  f r a c t u r -  
i n g  o f  t he  lamina bundle and hence the energy-absorption c a p a b i l i t y  can be a 
func t i on  o f  crushing speed. 

The mechanism t h a t  con t ro l s  the  l o c a l  buck l ing  crushing mode i s  t he  y i e l d  
s t rength  o f  the  f i b e r  and/or matr ix .  B r i t t l e  f i b e r  re in fo rced  composites can 
produce the  l o c a l  buck l i ng  crushing mode only  i f  the  ma t r i x  has a low s t i f f -  
ness and h igh  f a i l u r e  s t ra in .  Therefore, i f  the  ma t r i x  mechanical response i s  
a func t ion  o f  s t r a i n  r a t e  then the  energy-absorption c a p a b i l i t y  can be a func- 
t i o n  o f  crushing speed. D u c t i l e  f i b e r  re in fo rced  composites crush i n  t h e  
l o c a l  buck l ing  mode because of e i t h e r  the  f i b e r  o r  ma t r i x  proper t ies.  
Therefore, i f  e i t h e r  the f i be rs  o r  matrices mechanical response i s  a f u n c t i o n  
o f  s t r a i n  r a t e  then the  energy-absorption c a p a b i l i t y  can be a func t i on  o f  
crushing speed. 

Graph i te/Epoxy Tube Specimens 

The energy-absorpt ion c a p a b i l i t y  o f  [O/+el2 Gr/E specimens was not  a f u n c t i o n  
o f  crushing speed as shown i n  f i g u r e  6. A l l  specimens crushed i n  a b r i t t l e  
f r a c t u r i n g  mode. The energy assoctatect f r a c t u r i n g  of tke+m+m 
bundles i s  considerably more than the energy associated w i t h  i n te r l am ina r  
crack growth i n  the b r i t t l e  f r a c t u r i n g  mode. 
0 degree p l i e s  i n  the  layup. 
s t r a i n  r a t e  e f f e c t s  o f  the  mechanical response. Therefore, the  energy-absorp- 
t l o i i  c a p a b i l i t y  ~f [!!/+e]2 specimens should not be a f u n c t i o n  o f  the  crushing 
speed which i s  cons is ten t  w i t h  the resu l ts  depic ted i n  f i g u r e  6.  

A l l  [0/+8]2 specimens have 
The 0 degree p l i e s  i n  the lamina bundle reduce 

The energy-absorpt ion c a p a b i l i t y  o f  [-+el3 G r / E  specimens was a f unc t i on  of 
crushing speed as shown i n  f i g u r e  6. As p l y  o r i e n t a t i o n  angle, 8, increased 
from 15 t o  75 degrees the  magnitude o f  t he  e f f e c t s  o f  crushing speed on 
energy-absorpt ion c a p a b i l i t y  increased. Energy-absorption c a p a b i l i t y  
increased as much as 35 percent over the speed ranged tested. 
specimens crushed i n  predominantly a b r i t t l e  f r a c t u r i n g  mode. 
o r i e n t a t i o n  angle increased from 45 t o  75 degrees the  mechanical response o f  
t h e  lamina bundles became more s t rongly  in f luenced by the  ma t r i x  p roper t i es  
than the  f i b e r  p roper t ies .  The percent o f  the  t o t a l  energy absorbed by t h e  
f r a c t u r i  ng o f  the  1 ami na bund1 es decreased, therefore,  t he  energy absorbed by 
the  i nter laminar  crack growth r e l a t i v e  t o  the  t o t a l  energy absorbed increased. 
I f  the  ma t r i x  mechanical response i s  a f unc t i on  o f  s t r a i n  ra te,  then the  
energy-absorption c a p a b i l i t y  o f  the specimen i s  a func t i on  o f  crushing speed. 
The magnitude o f  t he  change i n  energy-absorption c a p a b i l i t y  i s  a func t i on  o f  
p l y  o r i e n t a t i o n  angle. 

F igure  7 dep ic ts  t y p i c a l  G r / E  crushed tubes having p l y  o r i e n t a t i o n s  of 
[0/+45]2 and [+45]3 crushed a t  speeds o f  0.01 m/sec, 6 m/sec and 12 m/sec. 
Based upon the  e x t e r i o r  appearance of  t he  tube the  crushing response was n o t  
a func t i on  o f  crushing speed. Af ter  sec t i on ing  the  tube specimens and 
examining the  crushing mode more closely,  d i f f e rences  i n  crushing behavior 

A l l  
As the  p l y  
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were d is t ingu ishab le .  F igure 8 shows photomicr.ographs d e p i c t i n g  the crushing 
behavior o f  [0/?4512, [0/+75]2, [+45]3, and [+75]3 specimens. The character-  
i s t i c  c rack ing  pa t te rn  o f  the  [0/+0]2 specimens, "as seen" i n  f i g u r e  8, i s  t he  
format ion o f  in te r laminar  cracks adjacent t o  the  0 degree p l i e s .  These i n t e r -  
laminar  cracks fo rm lamina bundles which f a i l  i n  a b r i t t l e  f r a c t u r i n g  mode. 
The length  o f  the i n t e r l a m i n a r  cracks o f  the  [0/+45]2 specimens were s i m i l a r  
f o r  t he  0.01 m/sec and the  12 m/sec cases, and the  energy-absorption c a p a b i l i -  
t i e s  were comparable. However, the  i n te r l am ina r  cracks o f  the  6 m/sec cases 
f o r  t he  [0/+45], specimen was sho r te r  than those f o r  t he  o ther  crushing 
speed. The [0/+7512 specimen exh ib i ted  l ess  i n te r l am ina r  cracks a t  0.01 m/sec 
than the  6 m/sec and 12 m/sec cases. The growth i n  i n t e r l a m i n a r  cracks w i t h  
crushing speed i s  a func t i on  of t he  ma t r i x  mechanical response being a 
func t i on  o f  s t r a i n  r a t e  s i m i l a r  t o  t h a t  repor ted i n  re ference 14. 

Kevlar/Epoxy Tube Specimens 

F igure  9 shows the e f fec t  of crushing speed on the  energy-absorption capa- 
b i l i t y  o f  [0/+0]2 and [+e32 K/E tube specimens. 
crushed i n  the  loca l  buck l ing  mode. The energy-absorption c a p a b i l i t y  o f  a l l  
K /E specimens was determined t o  be a func t i on  o f  crushing speed p a r t i c u l a r l y  
between crushing speeds of 6 m/sec and 12 m/sec. 
increased between 20 and 45 peccent fo r  both [0/20]2 and [+e13 specimens 
between crushing speeds o f  10- m/sec and 12 m/sec. Specimens w i t h  f i b e r s  
predominant ly or iented i n  the d i r e c t i o n  of the app l ied  load (e.g., [0/+15]2 
and [+1513) exh ib i ted  the  most s i g n i f i c a n t  increase i n  energy-absorption 
c a p a b i l i t y  as crushing speed increased from 6 m/sec t o  12 m/sec. The mechani- 
ca l  response o f  Kevlar f i b e r s  i s  a func t i on  o f  s t r a i n  r a t e  as a r e s u l t  o f  t h e  
polymer o r i g i n  o f  the  f i b e r .  Therefore, the observed change i n  energy-absorp- 
t i o n  c a p a b i l i t y  w i t h  changes i n  crushing speed and p l y  o r i e n t a t i o n  are reason- 
able. 

A l l  K/E tube specimens 

Energy-absorption c a p a b i l i t y  

F igu re  10 depicts t y p i c a l  crushing behavior of the  K/E tubes. A l l  K/E speci-  
mens e x h i b i t e d  the c h a r a c t e r i s t i c  l oca l  buck l ing  mode. No n o t i c a b l e  change i n  
c rush ing  modes were ev ident  between d i f f e r e n t  crushing speeds. 

General 

The r e s u l t s  descr ib ing t h e  e f fec t  o f  crushing speed on [0/+0], and [ + e l 3  
G r / E  and K/E i s  cons is ten t  w i t h  the crushing process descr ibed i n  a prev ious 
sect ion.  Specimens whose crushing mechanisms' mechanical response i s  a func- 
t i o n  of s t r a i n  ra te  e x h i b i t e d  an energy-absorption c a p a b i l i t y  t h a t  was a func- 
t i o n  o f  crushing speed. 

CONCLUDING REMARKS 

Graphite/epoxy (Gr/E) and Kevlar/epoxy (K/E) tube specimens w i t h  p l y  o r i en ta -  
t i o n s  o f  [0/+0]2 and [ + e l 3  were crushed a t  crushing ram speeds between 
10" m/sec and 12 m/sec. 
modes were determined as a func t ion  o f  crushing speed. The e f fec ts  of 
crushing speed on the  energy-absorption c a p a b i l i t y  o f  specimens fabr ica ted  
from composite mater ia l  was determined t o  be r e l a t e d  t o  whether t h e  mechanical 
response o f  the  crushing mechanism t h a t  con t ro l s  the  c rush ing  process i s  a 

The energy-absorption c a p a b i l i t i e s  and crushing 
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funct ion o f  s t r a i n  rate. The energy-absorption c a p a b i l i t y  o f  t h e  [0/*el2 G r / E  
specimens were not a func t ion  o f  crushing speed w h i l e  t h e  [*e l3  Gr /E  specimens 
e x h i b i t e d  up t o  a 35 percent change i n  energy-absorption c a p a b i l i t y .  
magnitude o f  the  change i n  energy-absorption capabi 1 i t y  w i t h  respect t o  change 
i n  crushing speed o f  the  [*el3 Gr/E specimens was a f u n c t i o n  o f  p l y  o r ien ta-  
t i o n .  Both [o/+eJ2 and [+e l3  K/E specimens e x h i b i t e d  between 20 and 45 per- 
cent increase i n  energy-absorption capab i l i t y .  Furthermore, t h e  percent 
change i n  energy-absorption c a p a b i l i t y  w i t h  respect t o  crushing speed was 
d i r e c t l y  r e l a t e d  t o  t h e  amount of Kevlar f i b e r  o r ien ted  i n  the  d i r e c t i o n  o f  

The 
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